
INTEL®
Python
Accelerate machine
learning
Angelina Kharchevnikova, SW Development Engineer
angelina.kharchevnikova@intel.com

2

Disclosures
Intel Technology and Manufacturing Day 2017 occurs during Intel’s “Quiet Period,” before Intel announces its 2017 first
quarter financial and operating results. Therefore, presenters will not be addressing first quarter information during
this year’s program.

Statements in this presentation that refer to forecasts, future plans and expectations are forward-looking statements
that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “goals,” “plans,”
“believes,” “seeks,” “estimates,” “continues,” “may,” “will,” “would,” “should,” “could,” and variations of such words and
similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on
projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on
management’s expectations as of March 28, 2017, and involve many risks and uncertainties that could cause actual
results to differ materially from those expressed or implied in these forward-looking statements. Important factors that
could cause actual results to differ materially from the company’s expectations are set forth in Intel’s earnings release
dated January 26, 2017, which is included as an exhibit to Intel’s Form 8-K furnished to the SEC on such date.
Additional information regarding these and other factors that could affect Intel’s results is included in Intel’s SEC filings,
including the company’s most recent reports on Forms 10-K, 10-Q and 8-K reports may be obtained by visiting our
Investor Relations website at www.intc.com or the SEC’s website at www.sec.gov.

3

python

0% 10% 20% 30% 40% 50% 60% 70%

Python

RapidMiner

R Language

Excel

Anaconda

SQL Language

Tensorflow

Keras

Scikit-learn

Tableau

Apache Spark

Top Analytics, Data Science, Machine Learning Software

2017 % share

2018 % share

2019 % share

https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html

4

Accelerate python performance
Analysts
Data Scientists
Machine Learning Developers

• Achieve faster Python application
performance - right out of the box - with
minimal or no changes to the code

• Accelerate NumPy, SciPy, Scikit-learn and
Pandas with integrated Intel® Performance
Libraries such as Intel® Data Analytics
Acceleration Library

https://github.com/IntelPython

5

Machine Learning Pipeline

Data
Preprocessing

Model
Training

Pandas
SDC

Scikit-learn
Daal4py

Intel® Data Analytics Acceleration Library
(DAAL)

6

Scalable dataframe compiler

A JIT compiler-based framework
to speed up Pandas

Decorator

@hpat.jit

Parallel/Distribut
ed Analysis

Compile

Data Input
Data

Preprocessing

@hpat.jit

def get_stats():

…

df[‘latency'].sum()

df[‘latency'].mean()

…

vucomisd %xmm0, %xmm0

setnp %dl

jp .LBB0_11

vaddsd %xmm0, %xmm2, %xmm2

.LBB0_11:

vaddsd %xmm0, %xmm3, %xmm1

vcmpunordsd %xmm0, %xmm0, %xmm0

vblendvpd %xmm0, %xmm3, %xmm1

7

Numba

Scalable dataframe compiler
No python

Datatype registration

Numba IR transformation/handling

Pre-Typing Inlining Typing

Threaded
parallelizatio

n

No python
mode

transforms

Backend transformer (Lowering)

LLVM

Threaded
parallelization

Object mode

Decorators Data types

NumPy

Unicode

DateTime

Initialization:

Execution:

hpat

MPI
parallelization

Decorators Data types

Series

DataFrames

HDF5

SDC

Extra pass

Pipeline transform:

8

• Numbers are in seconds

• Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz, HT=ON (8 cores) 32GB mem

import numba

import numpy as np

import hpat

import time

@jit(nopython=True, parallel=True)

def calc_pi(n):

x = 2 * np.random.ranf(n) - 1

y = 2 * np.random.ranf(n) - 1

pi = 4 * np.sum(x**2 + y**2 < 1) / n

return pi

n = int(0.1e9)

pi = calc_pi(n)

start_time = time.time()

pi = calc_pi(n)

print("time: ", time.time() - start_time)

print("PI:", pi)

Python
Numba

HPAT
(default)nopython=

True
nopython=True,
parallel=True

1 2.81 1.99 0.22 0.95

2 n/a n/a n/a 0.47

4 n/a n/a n/a 0.24

8 n/a n/a n/a 0.22

import numba

import numpy as np

import hpat

import time

@jit(nopython=True, parallel=True)

def calc_pi(A, B, n):

x = 2 * A - 1

y = 2 * B - 1

pi = 4 * np.sum(x**2 + y**2 < 1) / n

return pi

n = int(0.1e9)

A = np.random.ranf(n)

B = np.random.ranf(n)

pi = calc_pi(A, B, n)

start_time = time.time()

pi = calc_pi(A, B, n)

print("time: ", time.time() - start_time)

print("PI:", pi)

Python
Numba

HPAT
(default)nopython=T

rue
nopython=True,
parallel=True

1 0.75 0.64 0.06 0.08

2 n/a n/a n/a 0.12

4 n/a n/a n/a 0.23

8 n/a n/a n/a 0.52

import numba

import numpy as np

import hpat

import time

@jit(nopython=True, parallel=True)

def calc_pi(A, B, n):

x = 2 * A - 1

y = 2 * B - 1

pi = 4 * np.sum(x**2 + y**2 < 1) / n

return pi

n = int(0.1e9)

A = pd.Series(np.random.ranf(n))

B = pd.Series(np.random.ranf(n))

pi = calc_pi(A, B, n)

start_time = time.time()

pi = calc_pi(A, B, n)

print("time: ", time.time() - start_time)

print("PI:", pi)

Python
Numba

HPAT
(default)nopython=T

rue
nopython=True,
parallel=True

1 3.01 0.33

2 n/a n/a n/a 0.40

4 n/a n/a n/a 0.60

8 n/a n/a n/a

Scalable dataframe compiler

9Try it out! conda install -c intel daal4py

scikit-learn daal4py

Intel® Data Analytics Acceleration Library
(Intel® DAAL) Intel®

MPI
Library

Intel® Math
Kernel Library

(Intel® MKL)

Threading
Building Blocks

(TBB)

Simple Python API
Powers scikit-learn

Powered by DAAl

Scalable to
multiple nodes

Daal4py

10

Ml algorithms supported by daal4py

Supervised
learning

Regression

Linear
Regression

Classification

Weak
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least

Squares

Ridge
Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

Multinomial
Naïve Bayes

PCA

DBSCAN

11

demo

